sPHENIX/MAPS Pre-Proposal Outline

- Executive Summary (1~2 pages)
 - Science highlights
 - Mission Need
- Physics Goals (~2 pages)
 - B-jet physics at intermediate pT (>10 GeV)
 - B-hadron physics at low pT (<10 GeV)
- Detector Requirements (~2 pages)
 - Tracking impact parameter resolutoin
 - B-tagging in AuAu
 - Readout rate
- Physics Performance (~2 pages)
 - B-tagging
- Technical Scope and Deliverables (~2 pages)
 - · Stave assembly and testing
 - Readout
 - Mechanical structures
- Organization and Collaboration (1~2pages)
- Schedule and Cost Baseline (3~5 pages)

Tasks and Timeline

- Pre-proposal writing
 - · Identify required resources and timeline
 - Intended contributions from each institution
 - Electronics and readout LANL
 - Mechanic system, cooling and integration MIT
 - Mechanical carbon structures and simulations LBNL?
 - Ancillary and other systems other collaborators
 - Frist draft by mid December 2016, for sPHENIX collaboration meeting, discuss future path
 - A draft by January 2017? Discussions with DOE during Feb budget meeting
- MAPS detector subgroup to identify and work on:
 - Tasks, Resources and Responsibilities for each institution
 - Agreement on each institution's interest and available resource
 - Starting joint R&D on critical tasks
 - LDRD, associate members and other R&D fund etc
 - readout
- More communications with DOE
 - Based on updated resource loaded Cost and Schedule from pre-proposal
 - Then decide on next step
 - either go forward or not, work out a plan with DOE
 - Get more support from ALD & DOE on CERN-SPHENIX agreement etc.
- Full proposal writing after discussion with DOE in Feb 2017?
 - Submission, ~May 2017?
 - Reviews, by CD-1
 - Aiming for Fed. Budget FY2020 start up?
- Can we do it for an earlier startup, FY19?
 - MOU/Agreement with CERN on MAPS production ? ---- DOE CERN Agreement?

CERN-BNL "MoU" for sPHENIX Production: a Proposal

- Defined the minimal scope of the project in the MoU
 - A 3-layer MAPS detector identical to ITS/IB
 - 48 staves + 40% spares = 68
 - MAPS chips
 - 68 fully tested staves, 68x9=612 chips
 - 20% fully tested spare MAPS chips, 612x20% = 122 chips
 - Total 734 MAPS chips
 - Flexible PC boards (FPC) with connectors and cables
 - One per stave, 68 of them
 - Cables and connectors customized to meet CERN safety rules
 - Luciano/CERN will send documents to confirm they also meet BNL safety standards
 - Fully assembled and tested Staves
 - Preparation and cleaning of MAPS, FPCs and frames etc.
 - · Alignment and gluing
 - Wire bonding
 - Assembly work mostly done by CERN techs
 - Final testing mostly by sPHENIX students/postdocs/techs
 - Mount staves on the ITS/IB space frame, ship fully tested space frame to BNL
 - Space frames to mount staves
 - · Cold plates
 - Electrical connectors etc.
 - Mechanical tubes/connectors
 - Metrology done at CERN
 - Setup a construction DB for sPHENIX production
 - Traveler documents
- All produced at CERN by ALICE ITS production lines
 - CERN technicians and facilities
 - With help frpm sPHENIX students/postdoc + some Techs

sPHENIX MAPS Inner Tracker

- Mechanics

ALICE ITS; Inner Tracker System

Layer 0 Rmax 26,70 Copy of ITS

Inner Tracker

sPHENIX MAPS Inner Tracker

Scope of the Project

MAPS & Electronics

- MAPS Detectors
 - MoU to build 68 ITS MAPS staves (40% spares)
 - No modification
- Readout Electronics
 - Use ALICE/ITS, RDO + CRU
 - Modify/reprogram CRU for sPHENIX
 - Plan-B: build a custom board to convert ALICE/ITS into sPHENIX DAQ format
 - R&D by LANL LDRD
- Production
 - Extend ALICE/ITS MAPS stave production
 - Train sPHENIX personnel for assembly and testing staves at CERN
 - Reproduce additional ALICE RDO+CRU for SPHENIX
- Ancillary systems
 - LV, cables, crates, racks etc.
 - · Slow control, safety and monitoring

Mechanics & Cooling

- No/(some) changes to ALICE/ITS inner tracker mechanical structures
 - End Wheels
 - · Cylindrical structure shells
 - Detector half barrels
 - Service half barrels
 - Detector and Service half barrels
 - Half support structures
- Mechanics Integration
 - Conceptual design by LANL LDRD
 - Prototype by sPHENIX R&D
 - Design integration frames
 - · Cage etc.
 - Installation tooling etc.
- Copy ALICE cooling plant design
 - Minor modification to fit sPHENIX
 - Smaller heat load than ALICE ITS
- Metrology and Survey

Participating and Interested Institutions

- LANL Readout & FEMs, Mechanics
- MIT Assembly and testing, cooling...
- LBNL Mechanical carbon structures, simulations
- BNL Integration and services, safety and monitoring
- UT-Austin MAPS readout electronics and testing
- Univ. of Colorado sPHENIX DAQ/DCM-II integration
- Univ. of New Mexico LV, cabling & connectors
- New Mexico State University Tracking algorithm and simulations
- Univ. of IL of Chicago Stave assembly and testing, offline analysis
- Iowa State University Assembly and testing, simulations
- Georgia State University Slow control and monitoring
- Florida State University Offline and simulations
- Univ. of California, Los Angeles Assembly and testing, simulations
- Univ. of California, Riverside Assembly and testing, simulations
- RIKEN/RBRC, Japan Assembly and testing, integration
- Yonsei, Korea MAPS QA and readout, simulations
- Czech Republic Miroslav/Mike Finger, Caclav Vrba et al , tasks TBD
- Peking Univ. many good students (already on CMS)
- CCNU already working on ALICE/ITS 5th layer, many students

Potential collaborators

